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Unsteady transonic nozzle flow of dense gases 
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(Received 14 February 1995 and in revised form 17 October 1995) 

Vapours of retrograde fluids, i.e. media with large values of the specific heats, may have 
the remarkable property that sonic conditions are reached three times rather than once 
during isentropic expansion or compression. As a result, the acceleration of such a fluid 
through a converging-diverging Lava1 nozzle under steady flow conditions may lead 
to the occurrence of an expansion shock discontinuity. Theoretical considerations then 
suggest that nozzles with two throats should be designed to achieve a full shock-free 
subsonic-supersonic expansion. 

In this study the unsteady flow of a dense, retrograde gas through slender nozzles 
(with one and two throats) is considered. The combination of the Navier-Stokes 
equations supplemented with a non-classical equation of state for the fluid yields a 
generalized wave equation, with its validity restricted to flow conditions near the 
critical value M = 1. This equation is used to study the transition process which sets 
in if a steady subsonic solution is perturbed by lowering the pressure at the end of the 
nozzle. 

1. Introduction 
Recent studies (e.g. Burnside 1973; Smith 1981 ; Curran 1981 ; Zorner & Blumenberg 

1989) indicate that fluids having large specific heats may prove beneficial in Rankine 
power cycles if the maximum temperatures which can be achieved are relatively low as 
in the case of solar cycles, geothermal cycles, etc. These so-called retrograde fluids have 
the distinguishing property that the vapour dries rather than wets during isentropic 
expansion. Moreover, for even larger values of the specific heats the fundamental 
derivative 

which in the case of perfect gases and other regular fluids is a strictly positive quantity, 
is found to change sign and to become negative in the neighbourhood of the critical 
point. Here 6, p” and s” denote the speed of sound, the density and the entropy, 
respectively. 

The possibility that real fluids may exhibit regions of negative r in the dense-gas 
regime seems to have been recognized first by Bethe (1942) and independently by 
Zel’dovich (1946) on the basis of the Van der Waals equation of state. As an example, 
figure 1 shows the location of the transition line T = 0 in the pressure (p”)-specific 
volume (1 / p )  plane for a Van der Waals fluid, assuming that the (constant) isochoric 
heat capacity CU is.50 times larger than the universal gas constant R“, which roughly 
corresponds to n-octane. Using more refined and accurate equations of state, several 
members of the families of hydrocarbons and fluorocarbons were later identified as 
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candidates for real negative-I--fluids by Thompson and co-workers (e.g. Thompson 
1971; Thompson & Lambrakis 1973). Because of the significance of each of these 
studies by Bethe, Zel'dovich and Thompson it has become common to refer to 
retrograde fluids that exhibit negative-r regions as BZT-fluids. Very recent calculations 
strongly point to the existence of silicon based BZT-fluids in addition to the 
hydrocarbons and fluorocarbons mentioned earlier (private communication by M. 
Cramer, see also Angelino & Invernizzi 1993). 

Most studies of Rankine-cycle power systems using retrograde fluids or BZT-fluids 
as working media have concentrated so far on purely thermodynamic considerations, 
while gasdynamic aspects have received only very scant attention. However, a more 
complete evaluation of such systems will certainly have to take into account the 
unusual flow properties of these fluids, which include a number of new phenomena not 
encountered in classical gasdynamics (e.g. Cramer 1991 ; Kluwick 1991 ; Thompson 
1991). As a first step steady external transonic flows of BZT-fluids were investigated by 
Cramer & Tarkenton (1 992), while steady transonic nozzle flows were studied by 
Chandrasekar & Prasad (1 99 1) and Kluwick (1993). Nozzle flows of retrograde and 
BZT-fluids with arbitrary large Mach number variation were computed numerically by 
Cramer & Fry (1993). 

These studies have revealed a number of interesting new results. For example, it has 
been found that there exists a range of stagnation conditions for which the distributions 
of the field quantities on the axis of a conventional converging-diverging nozzle for 
subsonic flow reaching critical conditions at the throat and for subsonic-supersonic 
flow are different not only downstream, but also upstream of the throat (figure 2h).  
Moreover, a shock-free subsonic-supersonic expansion cannot be achieved by means 
of such a Lava1 nozzle for an even larger range of stagnation conditions. In order to 
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FIGURE 2.  Density distributions (not to scale) in the throat area of a converging-diverging nozzle 
cqrrespondilng to accelerating -decelerating and purely accelerating flow. (a) Perfect gas, (b) BZT-fluid 
( ~ 3 3 ~ ~  > r, > 0, A,, > 01. 

avoid shocks nozzles with two throats, rather than a single throat, are required in these 
cases. The local Mach number then assumes its critical value of 1 in both throats and 
the intervening antithroat which reflects the fact that the Mach number-density 
relationship corresponding to these stagnation conditions exhibits three sonic points. 

The results summarized so far naturally raise the question of whether and how a 
steady subsonic-supersonic expansion of a BZT-fluid can be achieved starting from 
subsonic conditions by, for example, lowering the exit pressure of the nozzle. The basic 
conceptual difficulty associated with such a transition process can be inferred most 
easily if the initial density distribution on the axis of a Lava1 nozzle is identified with 
the subsonic solution reaching a critical state at the throat. Since the density 
perturbations vary linearly with distance i as i +- 0 + , upstream-propagating waves 
cannot reach the throat 2 = 0 in a finite time. This is of no concern in the case of a 
perfect gas (figure 2a)  as the density distribution upstream of the throat remains 
unchanged during the transition process leading from subsonic to subsonic-supersonic 
conditions. However, in the case of a BZT-fluid the density distribution there has to 
be modified also. A similar difficulty arises in the case of nozzles with two throats, 
where a solution with three sonic states has to be generated from a solution with a 
single sonic state. It is the aim of the present paper to investigate these starting 
problems in more detail. As in the study by Kluwick (1993, in the following referred 
to as I), the considerations will be limited to the throat area of the nozzle, where the 
flow is assumed to be transonic and quasi-one-dimensional. 

The range of validity of the quasi-one-dimensional (hydraulic) approximation in the 
transonic regime has been studied extensively in the past for the perfect gas case (e.g. 
Ryzhov 1978; Adamson & Messiter 1988). If the wall curvature of the nozzle under 
consideration is small, the variations of the various field quantities in the lateral 
directions are small too, and, as demonstrated by Oswatitsch & Rothstein (1 942) and 
independently by Szaniawski (1965), it is possible to construct series solutions 
containing powers of the transverse coordinate and functions of the distance along the 
centreline in which the quasi-one-dimensional result serves as the leading-order term. 
Using asymptotic methods, Adamson, Messiter & Richey (1974) and Messiter & 
Adamson (1975) have shown how these series solutions can be derived in a more 
systematic way and how they can be generalized to include unsteady effects. In 
addition, their analysis indicates that the series solutions are not uniformly valid if the 
quasi-one-dimensional approximation exhibits shock discontinuities or discontinuities 
of the first-order derivatives of the field quantities at the nozzle throat. In both cases 
the series solution plays the role of an outer solution which has to be supplemented 
with appropriate inner solutions holding in thin layers centred at shocks or the throat, 
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whose thickness tends to zero in the limit of vanishing wall curvature. As an example, 
it was shown that the (outer) series solution for accelerating-decelerating flow leading 
to critical conditions at the throat can be matched with an (inner) similarity solution 
of the full transonic nonlinear small-disturbance equation obtained by Tomotika & 
Tamada (1950). Unfortunately, however, the use of similarity solutions to render the 
series approximations uniformly valid turns out to be rather limited. Although such 
solutions can be derived for flows with shock discontinuities and unsteady flows 
(Ryzhov 1967; Adamson & Richey 1973), these solutions do in general not satisfy the 
requirements of steady nozzle geometry and smooth walls. As a result, the construction 
of appropriate inner solutions for such flows will require substantial numerical efforts. 
To the authors' knowledge systematic numerical studies of this problem have not been 
performed yet. 

The general description of the flow structure in slender nozzles summarized so far 
carries over unchanged to the dense-gas regime where effects of negative nonlinearity 
come into play. Again, the quasi-one-dimensional solution - to be determined in this 
study - should be regarded as the leading-order term of an asymptotic outer solution. 
As in the perfect gas case, it is expected to capture the essential flow features. 

2. Problem formulation 
In this paper we consider the unsteady inviscid flow of a dense gas through a slender 

nozzle as sketched in figure 3. As in I it will be assumed that the nozzle shape is 
independent of the time fand that the area of the cross-section x(2) changes sufficiently 
slowly with the distance 2 so that the variations of the field quantities in the direction 
normal to the nozzle axis are negligibly small. Again, the investigations will be 
restricted to the throat region of the nozzle, where the Mach number A4 differs only 
slightly from the critical value M = 1. 

Introducing the non-dimensional variables 

the governing equations for inviscid unsteady quasi-one-dimensional flow can be 
written in the form 

av av 1 t!p as as -++-+-- = 0,  -+v- = 0. 
at ax at  ax pax at  ax 
aP a@vA) = 0, -+- 

Here 5,  p",p", F, h" and idenote, respectively, the velocity, density, pressure, temperature, 
specific enthalpy and the entropy. The subscript 0 denotes quantities evaluated at a 
sonic reference state, L" and &, characterize the length and the cross-sectional area of 
the throat region and a" = (ay7/dp"18)1/2 is the speed of sound. 

It is convenient to cast the continuity, momentum and energy equations (2.2) into 
compatibility form : 

dx 
d t  

on -- - u & a, (2.3 a, b) 

ds dx 
- = 0  on - = v .  
dt dt (2.4) 
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FIGURE 3. Sketch showing nozzle geometry and notation. 

These relations have to be supplemented with the shock jump conditions 

[PI Wbl  = [VI, ( W- 0,) (W- ua) = -, I.] 
(2.5 a, b)  

(2.5c, d )  

where Wis the shock propagation speed. The square brackets denote the jumps of the 
quantities, i.e. [Q] = Q,-Q, and the subscripts a and b refer to conditions after and 
before the shock. 

In this study we are concerned with the evolution of disturbances generated 
downstream of the throat area. Appropriate initial and boundary conditions then are 

t = 0, vx: p = P i ( X ) ,  p = p,(x),  ZI = u&); ( 2 . 6 ~ )  

(2.6b) 

( 2 . 6 ~ )  

Specifically, it will be assumed that the initial data correspond to a steady-state solution 
of equations (2.3a, b) and (2.4). The function p’(t) characterizes the pressure 
disturbances imposed at a fixed distance xo downstream of the throat region. 

t > 0, x = xo: p = p2(xo)  +p’(t); 

t B 0, x + - co : +/at = +/at = av/at = 0. 

3. Unsteady transonic small-perturbation equation 
As pointed out earlier, BZT-fluids are characterized by the existence of isentropes on 

which sonic conditions may be reached three times rather than once during expansion 
or compression. In general, the corresponding values of the density p t ,  p t ,  p: are well 
spaced, i.e. (pT-p:)/pT = 0(1), @:-p:)/pT = 0(1), necessitating a numerical 
treatment of the nozzle flow problem as in the case of steady flow investigated by 
Cramer & Fry (1993). If, however, the reference state is in the vicinity of the point in 
the ( p ,  l/p)-diagram where the isentrope touches the transition line, T and W / a p  I s  are 
small and so are the differences between the critical values of the densities, thus 
allowing a perturbation approach, see I. 

3.1. Small-disturbance approximation 
Let t‘ < 1 be a measure of the small density disturbances inside the throat area. Then 
p is expressed in the form 

p = 1 + €ppl + ezpz + €3p3 + o(C3). (3.1) 



118 A .  Kluwick and St.  Scheichl 

Owing to the requirement imposed on the reference state, r and its first and second 
derivative with respect to the density satisfy the order of magnitude relationships 

r(i,S") = t . 2 f o ,  f =  q i ) ,  

I ar 
-(1,Sn) = E l i o ,  in = 0(1), 
aP (3.2) 

As shown in Cramer & Crickenberger (1991) and I, the entropy jump across weak 
shocks is of fifth order in F :  

s = 1 + e5s5 + 0(e5) ,  (3.3) 

According to (3.1), (3.2) and (3.3) the leading-order term of the expansion for r is 
given by 

(3.4) 
By using standard thermodynamic relationships the following expansions for p and 

a can be derived: 

p = 1 + t.pl + c2pz + e3p3 + 0(e3) = 1 + t.pl + e2( -p; +p,) + e3@: - 2p, pz +pa) + 44, (3.5) 

a = 1 - cp1 + e2@; -pz) + c3 ((24 - 1) p; +;p: lo + fnppl + 2p, p2 - p 3 )  + o(e3)>. (3.6) 

Furthermore, the leading-order term in the expansion for T is given by 

(3.7) 
cpn 

with Cp and p" representing, respectively, the isobaric heat capacity and the coefficient 
of thermal expansion. 

3.2. Evolution equation 
Similar to p and p ,  the velocity u is also expanded in the form 

p"0 4 T =  1 +t.yp1+0(t.), 

v = 1 + €Ul  + € 2 U ,  + €321, + o(t.3). (3.8) 

If the effects of the changing area of cross-section and the time are to be retained at 
the appropriate levels of approximation, we have to write 

A = 1 + t . 4 ~ 4 + 0 ( F 4 )  (3.9) 
and to require that the various field quantities depend on x and the slow time 

t "= e3t. (3.10) 

Here the scaling of t depends crucially on the assumption made in $2 that no 
disturbances enter the throat from upstream. As will be shown later, the speed of 
upstream-propagating waves then is of 0(e3) and (3. lo), therefore, reflects the fact that 
the time needed for an upstream-propagating wave to transverse the throat region is 

Substitution of the expansions (3.1), (3.2), (3.3), (3.5), (3.6) and (3.8) into the 
compatibility condition (2.3~~) for right-running characteristics leads to a set of 
perturbation equations, which can be solved in closed form. Taking into account the 
boundary conditions ( 2 . 6 ~ )  for x+- co one obtains 

of 0(1/.3). 

u1 = -P1, v2 = -pz+p:, u3 = - P 3 - p : + 2 p l P z .  (3.11u-c) 
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On substitution of the expansions (3.1), (3.2), (3.3), (3.9, (3.6) and (3.8) into the 
compatibility condition (2.3 b) holding on left-running characteristics one obtains 

(3.12) 

dx 
~ = U S  -((+ 4- 1) pf + apf i n  + fo pi ++I  p 2 - p ~ .  d i  

on 

Combination of (3.11), (3.12) and (3.13) yields the single evolution equation for p l :  

(3.13) 

(3.14) 

Introducing the perturbation mass flux density 
A 

j ,  = -rop;-~Aop;-~iy)N,p;l, (3.15) 

the modified unsteady small-perturbation equation (3.14) can be written as 

(3.16) 

Owing to the upstream boundary condition (2.6c), vl,  v2, v3 and p,, p2, p3 are related 
in exactly the same way as in the case of a steady flow. As a consequence, the result 

(3.17) 

derived in I for steady nozzle flow carries over unchanged to unsteady problems. 
Furthermore, the values of the density perturbations at sonic conditions M = 1, 

PT.1 = 0 (3.18) 

and (3.19) 

again correspond to the values of p1 at the maxima and minima of the perturbation 
mass density jl(p,). 

Combination of (3.4) and (3.15) yields f = -@d2j,/dp;. Accordingly, the local value 
of the fundamental derivative changes sign at the values of p1 defined by the inflexion 
points of the (jl,pl)-diagram (figure 4). 

3.3. Formal soIution of the evolution equation 

Substitution of (3.11 c)  into (3.13) which determines the propagation speed of left- 
running characteristics, labelled [ = const., yields 

(3.20) 

As a consequence, the evolution equation (3.14) can be written in the equivalent form 

1 dA, d 
or - ( j ,  + A4) l 5  = 0. dx 

- (3.21 a, b) 
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FIGURE 4. (jl,pl)-diagram for &34,  > fa > 0, il", > 0 (fo = 4.6, Lo = 15.8, y = 17.67). 

A formal solution of this equation is given by 

(3.22) 

where is an arbitrary function. 
It is interesting to note that (3.22) differs from its steady counterpart 

.ii@i(x)) + A~(x) = Q (3.23) 

derived in I only insofar as the integration constant Q is replaced with the functionfTQ. 
On each characteristic < = const., therefore, j ,  and A,  are related in exactly the same 
way as in the case of steady flow. Similar to the case of steady flow, (3.21) thus leads, 
in general, to the occurrence of regions of multivaluedness, which have to be obviated 
by the insertion of shock fronts. In contrast to steady nozzle flow, however, these 
shocks may generate extra characteristics if the upstream or/and downstream state is 
sonic. 

3.4. Weak thermoviscous effects 
So far the considerations have been limited to inviscid flows. Weak thermoviscous 
effects, however, can be easily incorporated into the analysis. To this end, we assume, 
following I, that the Reynolds number based on the characteristic wavelength is large : 

The appropriate generalization of (3.16) then is found to be 

(3.24) 

(3.25) 

Here the abbreviation inv characterizes the inviscid part of the mass flux density still 
defined by (3.15),8, is the acoustic diffusivity of a general fluid (e.g. Cramer & Kluwick 
1984) 

SO = - 1 @+2;mf17 (3.26) 

and &, PO,  Po and Pr denote, respectively, the first and second viscosity, the coefficient 
of thermal expansion and the Prandtl number evaluated at the unperturbed state. 

e3Re Prc",, ' 
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4. Weak shocks 
4.1. Shock propagation speed 

Assuming as before that the area of cross-section A ,  varies continuously with x, the 
shock propagation speed 

Straightforward manipulation of the shock jump conditions then yields W, = W, = 0, 
as expected, and 

‘= - ~ ~ O ( P l b + ~ l a ) - ~ / i o ( P ~ b + ~ l b ~ l a f ~ ~ a ) - ~ ~ ~ ~ b + ~ ~ b ~ l a + ~ l b ~ ~ o . + ~ ~ b ) ~  

(4.3) 

Using the definitions of the perturbation mass flux density (3.15), the leading-order 
approximation to (4.1) thus assumes the form 

(4.4) 

typical for all kinematic wave theories, e.g. Whitham (1974). 

4.2. Shock admissibility criteria 
As shown in I, the entropy jump across weak shocks having Tb = O(ez), A ,  = O(e), 
Nt = O(1) can be calculated from the relationship 

tvfl  c! 
7 [’I = $5b113 {‘O + +iO@]a +Plb) + &j &J(3P?a + 4Pla P l b  + 3 p ? b ) )  + o(E5).  (4.5) 

an 

Similar to the case of a steady flow, the requirement [s] 3 0 following from the second 
law of thermodynamics is not strong enough to rule out inadmissible shocks, i.e. 
shocks for which a thermoviscous profile does not exist. In order to derive the 
additional conditions which have to be met by admissible shocks it is necessary to carry 
out a matched asymptotic analysis of the modified viscous transonic small-perturbation 
equation (3.25) in the limit 8, +. 0. The (inner) structure problem then is formulated in 
terms of the stretched variables 

where x,(f) denotes the shock path occurring in the (outer) inviscid solution. 
Substitution of the definitions (4.6) into (3.25) yields for SO --f 0 

which has to be solved subject to the boundary conditions 

P1 Lrn +. P l b ,  P1 Iz+m + Pla. (4.8) 
following from the match with the inviscid flow outside the shock layer. 
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FIGURE 5. (j,pJ-diagram for 3ii/8N, > fo > i 3 3 N , ,  io > 0 (fo = 4.91, io = 15.8, 4 = 17.67) 
including Rayleigh lines of admissible shocks (e.g. 1 + 3 ,  4+2a, 4+3, 1 +2b) and inadmissible 
shocks (e.g. 2a+ 1, 3+4, 3+ 1, 5- t  1). 

The structure problem (4.7), (4.8) is of exactly the same form as the set of equations 
derived by Cramer & Crickenberger (1992) for the case of one-dimensional weakly 
onlinear waves. As a result, we obtain 

the Rayleigh line connecting 
the values of p1 before 

the shock admissibility criterion A (figure 5) 
the (j , ,  p,)-diagram ; 

dx dx > w > - .  [Bib .- ' dfla 

Taking into account that for each fixed value off there exists a functional relationship 
betweenj, and x, once the functionflLJ entering equation (3.22) has been specified, this 
result can be expressed in the form of 

(the line x = const. connecting the \ 
(4.10) values of p1 before and after the 

shock must not cut intervening 
the shock admissibility criterion B branches of the density distribution; I 

4.3. Admissible and inadmissible shocks in the @la,  p,,)-plane 
In order to decide whether a given pair of density perturbations ( 'pla,plb)  meets or 
violates the shock admissibility criterion A it is necessary to investigate the roots of the 
quadratic equation 
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which determine the intersection points p1 = pic, p1 = pld between the Rayleigh line 
and intervening branches of the (j,, p,)-diagram. (See figure 5 for possible cases of pairs 
(p la ,  p lb )  with p l c ,  p l d  being real or complex.) 

If the parameter 

6 

is larger than $, the (jl,pl)-diagram exhibits a single extremum at pi = p:.= 0. As a 
result, all pairs GIa,plb) satisfy the first part of shock admissibility criterion A. 
However, by applying the wave speed ordering relationship it is easily shown that for 
No > 0, which is of relevance here, shocks can occur in the form of compression shocks 
only. 

If B is smaller than i, the following limiting cases have to be distinguished: 

(i) pic = p l d :  the Rayleigh line touches the (j,,p,)-plot in an interior point, 

(ii) pic = p l h  or pld = plb: the shock has an upstream sonic state, 
(iii) plC = pla  or pld = pla:  the shock has a downstream sonic state. 

The final results are expressed most conveniently in terms of the scaled density 
perturbations 

(4.13) 
FIGURE 6. Admissible and inadmissible shocks in the @,,Fb)-plane. Density pairs violating the first 
part of criterion A are located within the hatched regions. In order to be able to meet the second pa$ 
of criterion A regions representing admissible combinations are labelled according to the sign of A,. 

FIGURE 6. Admissible and inadmissible shocks in the @,,Fb)-plane. Density pairs violating the first 
part of criterion A are located within the hatched regions. In order to be able to meet the second pa$ 
of criterion A regions representing admissible combinations are labelled according to the sign of A,. 

FIGURE 6. Admissible and inadmissible shocks in the @,,Fb)-plane. Density pairs violating the first 
part of criterion A are located within the hatched regions. In order to be able to meet the second pa$ 
of criterion A regions representing admissible combinations are labelled according to the sign of A,. 
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Pairs Gla, bib) for which conditions (i), (ii) or (iii) are satisfied are found to be located 
on ellipses centred at pla = p l b  = - [2/( 1 - 213)]''2 in the Gla,  b,,)-plane (figure 6). The 
lengths a, b of their main axes and the inclination angle with respect to the &-axis are 

(4.14~)  (i) a = 2 113, b = 2 ~ ' 6 ,  CI = --In: 4 ,  

(4.14h) 

(4.14~) 

5. Results 
The results summarized so far are sufficient to solve the initial value problem 

formulated in $2. If shocks form, their position can be calculated from (4.4) in 
combination with the shock admissibility criteria (4.9) or (4.10). 

In all cases treated here the shock path in the (x,f)-plane had to be determined 
numerically. To this end the shock speed at time f say was calculated from (4.4), 
inserting the density perturbations carried by the merging characteristics to obtain the 
approximate shock location at the slightly larger time f+ Af. If the shock at t^+ Af had 
a supersonic upstream and a subsonic downstream state the procedure was advanced 
to the next time step. If, however, the shock was found to have a sonic upstream or/and 
downstream state, additional characteristics had to be inserted to provide the correct 
density distribution inside regions of the (x, i)-plane which are inaccessible for 
characteristics emanating from the boundaries of the computational domain. 

If the transition process considered led to the occurrence of a single shock, its 
position was checked independently by applying a global mass balance. To this end 
(3.16) was integrated with respect to x and f in the domain x1 d x B x,, 0 < f < &. 
Under the assumption that the flow quantities at the upstream boundary x = x, remain 
constant (which for finite values of fl can always be satisfied by an appropriate choice 
of x,) one obtains the condition 

p' pl(x, fJ dx + JII pl(x, t̂ & dx = 
X I  

+ (jl(xl, f) + A4(xl)) '1, (5.1) 

which yields the shock position x, at time ft provided that the density distribution 
pl(x, fJ is known. 

5.1. Laval nozzle : perfect gas 
Steady and unsteady transonic nozzle flows of perfect gases have been studied 
intensively in the past (e.g. Ryzhov 1978; Adamson & Messiter 1988). Nevertheless, it 
is useful to treat first the more simple perfect gas case of the start problem (2.6), which 
has been investigated earlier by Kluwick (1972) applying a different (inverse) method. 
The relevant relationships then follow from (3.15), (3.20) and (3.22) with the 
substitutions f,, = ( y f  1)/2, & = N, = 0, f = et,  A ,  = ( A  - l)/s2. where y denotes the 
ratio of the specific heats. 

Specifically, it will be assumed that the shape of the classical convergent-divergent 
Laval nozzle in the region of interest is given by 

A, = c.2, c > 0 ( 5 4  
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and that the initially imposed density distribution is subsonic with M = 1 at the throat 
x = 0: 

The boundary condition at x = xo is written in the form 

p&o, 0 = p;""xo) + h ( f )  

(5.3)  

(5.4) 

G O  for fa i 2 0 .  (5.5) h(0) = 0 ,  h(i) 6 0, ~ 

dh(f) 
df 

with 

Here f characterizes the time at which the imposed density reduction leads to the 
occurrence of the sonic state pI(xo, f) = 0, and thus satisfies h ( f )  = -p","(xo). 

For f > f the propagation speed of characteristics [ = const. at x = xo is positive 
and for simplicity the function h ( f )  is chosen such that the imposed density 
perturbations (5.4) agree with the density perturbations carried by these characteristics 
as they leave the computational domain. In this way the necessary condition that 
pl(xo, t^) eventually assumes the value -p;"b(x,) characterizing the steady accelerating 
solution is satisfied automatically. Of course, any other form of h( i )  compatible with 
this requirement can be prescribed for i > f in principle but generates shock waves 
which originate at the downstream boundary and obscure the basic features of the 
transition process of interest here. 

From (3.22), (5.2),  (5.3) and (5.4) the formal solution of the compatibility condition 
for x 3 0 is found to be 

PI(& 5) = p s u b w ,  5 < 0. 
Herein, the parameterization 

has been adopted without loss of generality. 
x=x , :  i =  [ 

Evaluation of equation (5.6a) for p ,  = 0 yields the representation 

( 5 . 6 ~ )  

(5.6b) 

(5.7) 

for the x-location of the unsteady sonic line, along which solutions ( 5 . 6 ~ )  with different 
sign can be patched. Using this relationship, the solution of compatibility condition 
( 5 . 6 ~ )  is written in the more compact form 

By integrating the slope condition 

dx A 

- = - f o p 1  
d i  

one then obtains 
(5.10) 

2 
f(x,g) = [+-- (I=, c y  

(5.11) Identification of x and x* leads to the result 

artanh( xo-x*(g) 1 l iZ , 
t"*(() = [ + ( f O C ) l i 2  xo + x * ( D  

(5.12) 



126 A .  Kluwick and St. Scheichl 

8 

t^ 

4 

0 

Unsteady sonic line 

I I I 

0.2 0.4 0.6 0.8 0 
X 

FIGURE 7. Lava1 nozzle: perfect gas (Po = 1.2, c = 0.3, xo = 1, f =  3.5 > p ~ * ( x o ) / c x o  = 1.667). 
Position of characteristic curves and unsteady sonic line in the (x, ?)-plane. 

which together with (5.8) determines the position of the unsteady sonic line as a 
function of time. 

To study the behaviour of this sonic line in the vicinity of the throat (5.12) is 
expanded for x*(t)+O. To leading order one then obtains the explicit relationship 

(5.13) 

It thus follows that - independent of the special choice of function h ( o  - the 
unsteady sonic line generated by the imposed density/pressure reduction at x = x, does 
not reach the throat x = 0 in finite time. As a consequence, the flow properties in the 
converging part of the nozzle x < 0 remain unaffected by the downstream boundary 
conditions at all times. 

Differentiation of (5.8) and (5.12) with respect to 6 shows that the slope of the 
unsteady sonic line in the (x, ?)-plane is given by 

d P  -- x, h’(t) + cx*(t)>” -- 
dx x*(Q (To c ) ~ ’ ~  (x: - ~*to’) M(Q’ 

which yields the limiting values 

if h’( f) > - ex,, 

(5.14) 

(5.15) 

if h ’ ( f )  < -exo 
at x = x,. 

According to (5.15) the unsteady sonic line, therefore, starts at the downstream 
boundary x = x, if U(f) < -exo, while two branches propagating upstream and 
downstream are generated in an interior point 0 < x < x, if h ’ ( f )  > -cxo.  

As an example, the results summarized in this section have been evaluated 
numerically for the case that the imposed density distribution at x = x, is a linear 
function of time: 

h( t )  = - -p;yx,) ,  t 0 < 5 < f. (5.16) 
T 
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FIGURE 8. Laval nozzle: perfect gas for the same parameters as figure 7. Density distributions for 
various values off. - ----, Initial density distribution and density distribution corresponding to steady 
accclcrating flow; -. ' .  -, asymptotic relationship (5.18), f = 4.5. 

Figure 7 shows the location of characteristic curves and the unsteady sonic line in the 
(x, ;)-plane. Initially the characteristics emanating from x = x,, 0 < f < propagate 
upstream. On each of these characteristics, therefore, A ( x )  decreases with increasing 
propagation time until the sonic state p1 = 0 is reached at time t" = f*(Qn. As the 
characteristic passes through the unsteady sonic line, the fluid enters the supersonic 
flow regime and, consequently, the characteristic starts to travel downstream and 
eventually leaves the region x 6 x,, under consideration. With increasing time, 
therefore, the divergent part of the nozzle 0 < x < xo only contains characteristics for 
which is smaller than a time-dependent upper boundary S(t") satisfying 

lh(Ql < S(tn)+O as t"+co. (5.17) 

According to (5.6), however, h ( 0  for f >  f*(o characterizes the deviations of the 
density perturbations from the supersonic solution, which thus is reached asymp- 
totically in the limit f+-co. 

Density distributions in the divergent part of the nozzle x 2 0 are depicted in figure 
8 for various values of f. Also, results for large values of t" are compared with the 
asymptotic approximation 

(5.18) 

which follows from (5.8), (5.9), (5.11) and (5.12) in the limit t"+m(f+O). Good 
agreement is observed except for a contracting region near the throat, where the 
assumption f / x  < 1 made in the derivation of (5.18) is violated. 

5.2. Laval nozzle : BZT-fluid 
As shown in I, steady nozzle flows of BZT-fluids are qualitatively similar to those of 
perfect gases if f', > 3 8 / 8 4 .  Owing to the close relationship between the compatibility 
condition for steady and unsteady flows pointed out earlier ($3.3) this is true also for 
the start problem, which, therefore, will not be discussed in detail. Significant 
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deviations from the classical behaviour are observed, however, if f,, < 38/8ib;. 
Moreover, the results presented in I indicate that different forms ,Of the_ unsteady 
responses are expected to occur in the parameter ranges 3 8 / 8 4  > r,, > /1:/3N, and 
4/34 > f, > 0. Although the flow properties in these parameter ranges are different 
for positive and negative values of & the following discussion_is simplified by the fact 
that the nature of the transition process for 3 2 / 8 4  > f, > A:/3&,? 1, > 0 or A ,  < 0 
is qualitatively similar to that for $ , / 3 4  > r,, > 0, 1, < 0 or lo > 0. As a 
consequence, it is sufficient to study two typical cases with 2, > 0. To this end the 
system of governing equations consisting of the slope condition (3.20) and the 
compatibility condition (3.21 a) was integrated numerically using a Runge-Kutta 
algorithm of sixth order. 

Before turning to the specific problems it is important to note, that the shape of 
characteristic curves [ = const. in the (x, f)-plane qualitatively resembles the shape of 
the (j,,p,)-relationship if dA/dx does not change sign in the x-domain under 
investigation. As an example, we consider a characteristic that carries a positive value 
of p1 = pf > 0 at the starting point x = x i ,  f = 0, say. Furthermore, we assume 
dA/dx > 0 and take into account that in the parameter range of interest the sonic 
values of the density satisfy 

(5.19) 

Owing to the assumption pI > 0 the characteristic initially propagates upstream (figure 
9). According to (3.21~) with dA/dx > 0 the density disturbancep, on the characteristic 
decreases monotonically with increasing time and, therefore, the sonic state p1 = 

p:,, = 0 is reached eventually at f =  e. As p1 passes through this critical value, the 
characteristic starts to move downstream with increasing speed. However, decreasing 
values of p1 cause r to decrease also and finally to become negative. Inside the 
negative-r-regime a reduction of p1 is associated with a reduction of the wave speed. 
Consequently, the characteristic decelerates until the fluid reaches the second sonic 
state p1 = p r , 2  at f = e, which causes the propagation direction to change again. The 
characteristic travels upstream with increasing speed but the motion slows as the fluid 
finally returns into the positive-r-regime. Further decrease of the density disturbance 
p1 then leads to the occurrence of the third sonic state p1 = pf, at f = t:. For t^ > t: the 
characteristic moves downstream and eventually leaves the flow region under 
consideration. 

Similar to $5.1 the parameterization 5 = f is adopted at x = x, and the imposed 
density perturbations are taken to vary linearly with time until the (first) sonic state 
pl = pl*, = 0 is reached : 

p1,3 * < p?, 2 < p:, 1 == O' 

1 1  

(5.20) 

In order to avoid shocks which originate at the downstream boundary h([) for 
[ >  is chosen such that the density disturbances following from (5.4) agree with 
the density disturbances on the characteristics generated at x, during the time interval 
0 < f < 8. In contrast to the perfect gas case these characteristics exhibit three sonic 
points and, consequently, three unsteady sonic lines emanate from the downstream 
boundary at f = c, t^ = z, f = (in order to determine the function h ( 0  for 6 > c, 
therefore, the density variation on characteristics 0 < 5 < 8 that leave the com- 
putational domain during < f < but re-enter during < t^ < and finally leave 
for f 2 has to be considered; for completeness the location of these characteristics 
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FIGURE 9. Correspondence between (a) the shape of thc (j,,p,)-plot and (h) the shape of 
characteristic curves 5 = const. in the (x, $plane for dA/dx > 0. 

for x > xo is included in figure 10). The slopes of these sonic lines at x = x, can 
be calculated directly from (5.15) if fo is replaced by the appropriate value 

of the fundamental derivative. 
Typical numerical results for the parameter range 3&8N, > f o  > &3&,7 lo > 0 

are summarized in figures 10(a) and 11 (a). As in the case of a perfect gas the unsteady 
sonic line p1 = 0 does not reach the throat x = 0 in finite time and the flow properties 
in the converging part of the nozzle are not affected by the transition process. For this 
reason characteristic curves and density distributions are depicted for x 2 0 only. 
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FIGURE 10. Lava1 nozzle: BZT-fluid with (a) 3 4 / 8 h i ,  > fo > 4 / 3 N , , ,  .& > 0 (Po = 4.91, iQ = 15.8, 
N, = 17.67,*c = 0.3, x,, = 3.46, ,O;':~(X,) = 0.637, P =  0.5 < p ~ b " ( a ) / c ~ ,  = 0.614), and (b) 4 / 3 4  > 
4, > 0, A,, > 0 (To = 3.48, A,  = 14.03, N, = 17.48, c = 0.3, x,, = 3.46, p","(xa) = 0.695, 
T = 1 > p ; " b ( x a ) / c ~ ,  = 0.670). Position of characteristic curves, unsteady sonic lines and the 
expansion shock in the (x, 9-plane. -, Characteristics [ emanating from the downstream 
boundary: -----. characteristics 6 emanating from the sonic portion of the expansion shock. 
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FIGURE 11. Lava1 nozzle; BZT-fluid with (a) 3&8& > fQ > 4 7 3 4 ,  2, > (f,, = t.91, 2, = t5.8,  
N, = 17.67, c = 0.3, X, = 3.46, pyh(x0) = 0.637), and (b) Ai/3N0 > r, > 0, A,, > 0 (r,, = 3.48, A,  = 
14.03, N, = 17.48, c' = 0.3, x, = 3.46, p","(xx,) = 0.695). Density distributions for various values of i. 
_ _ _ _ _  , Initial density distribution and density distribution corresponding to steady accelerating flow. 
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A more detailed investigation shows the existence of an overlap region starting at a 
point located between the second and third sonic line where characteristic curves touch 
each other at the inflexion points r = 0. This leads to the formation of an expansion 
shock whose initial slope is given by 

(5.22) 

This shock has a sonic downstream state (figure 10a) and thus generates additional 
characteristics, which for f-tcc, e.g. as the shock approaches its steady-state position, 
determine the density distribution downstream. 

Density profiles for various values of t" are plotted in figure 11 (a). It is seen that the 
density distributions upstream and downstream of the expansion shock approach the 
steady flow solution much faster than the ;hock position. 

Results for a typical case with 2 3 3 4 ,  > 7, > 0, i,, > 0 are displayed in figures 10(b) 
and 11 (b). As in the case discussed above the reduction of the density/pressure at 
x = x, leads to the occurrence of an expansion shock whose origin coincides with the 
inflexion point of the characteristic that determines the cusp of an envelope. Initially, 
this shock has a sonic downstream state and, owing to its supersonic upstream 
conditions, the shock reaches the throat in finite time. As it passes through the throat, 
the shock becomes non-sonic again and starts to interact with the characteristics 
generated earlier during its first sonic phase. This interaction slows the shock and sonic 
upstream conditions are reached eventually. In this way a precursor region is 
generated, which in turn causes the necessary modifications of the density distribution 
upstream of this shock as it asymptotes its steady-state position in the limit f+m.  
Similar to figure 11 (a) the shock position is found to approach its steady flow result 
much more slowly than the upstream and downstream density profiles. 

5.3. Nozzles with two throats 
As shown in I, BZT-fluids can be accelerated shock free by means of a classical Lava1 
nozzle if fo > 3&/8N0 only. If Po < 3 4 / 8 4  shock-free solutions leading from 
subsonic to supersonic flow conditions were shown to exist for specially tailored 
nozzles with two throats rather than a single throat. For example, a linear 
density/pressure distribution 

p, = p l  = - e x  (5.23) 

can be achieved by means of the nozzle contour 

A4(x) = Q,,, -jl( - CX) = Q,,, + ~ , , ( c x ) ~  -+/i,(c~)~ (5.24) 

Here Q,,, denotes the value of j ,  at the maximum of the (j,p,)-relationship that 
defines the maximum value of the perturbation mass flux entering the steady flow 
version of the mass balance (3.23). 

Only the solution corresponding to Q = Q,,, was considered in I. Density 
distributions for various values of Q are depicted in figure 12. As in 55.2 it is sufficient 
to consider the cases 3 i t / 8 4  > fo > 8/34, i,, > 0 and 

Figure 12 reveals the important result that the solution of the steady flow problem 
with Q = Q,,, is non-unique. In addition to the desired shock-free expansion (5.23) 
there exists a second solution, which contains a sonic expansion shock located in the 
second throat (for 3&/84  > f, 8 / 3 4 )  or between the antithroat and the second 
throat (for @ / 3 4  > f,, > 0). As pointed out earlier, the formal solution of the 
compatibility condition (3.22) for unsteady flow differs from its steady counterpart 
(3.23) only insofar as the integration constant Q is replaced by a function of 6. This 

> f,, > 0, Lf, > 0. 
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FIGURE 12. Nozzle with two thro?ts: BZT-juid wi;h (a) 3 4 / 8 4  > f$ > 4 / 3 4 ,  lo > 0 (f, = 4.91, 
A,  = 15.8, N ,  = 17.67), and (b) 4 / 3 4  > To > 0, A,  > 0 (r, = 3.48, An = 14.03, No = 17.48). Steady 
density distributions for various values of Q (linear distribution for Q = Q,,, = 0 in (a) and 
Q = Q,,, = 0.7534). 

implies that ~ on each fixed characteristic g = const. - j ,  and A ,  are related in exactly 
the same way as in the case of steady flow. As a result, we conclude that the portion 
of the steady distribution (5.23) located inside the loops branching off at the saddle 
points situated at the antithroat and the first or second throat, respectively, cannot be 
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FJGURE 13. (a) Nozzle with two throats: BZT-fluid with 3 ~ & 8 N ,  > fo > &3&, 2" > 0 (f,, = 4.91, 
A ,  = 15.8, No = 17.67, c = 0.5, xo = 5.0, pYb(xo)  = 0.775). Position of characteristics, unsteady sonic 
lines and the shocks in the (x,f)-plane. -~--, Characteristics 6 emanating from the downstream 
boundary; - - - - - , characteristics 6 emanating from the sonic portions of the shocks; . . . . . . . , 
characteristics 5 emanating from that sonic portion of the expansion shock which is formed by 
characteristics generated by the compression shock. (b) Detail of (a) showing the interaction zone of 
the compression and the expansion shock. 
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generated by characteristics emanating from the downstream boundary x = x,. It thus 
appears that the steady solution with a sonic expansion shock rather than a shock-free 
solution will be realized by transition p_rocesses of the form investigated here. 

As shown in figure 13 for the case 3Ai/8N, > f,, > 4 / 3 4 ,  i,, > 0, this conclusion 
is in excellent agreement with the numerical computations. Herein, starting with the 
steady solution 01 (figure 12a) having a subsonic state in the second throat, the density 
at the downstream boundary x = x, was lowered continuously until p1 assumed the 
value corresponding to the purely accelerating linear solution given by (5.23). Since the 
flow properties upstream of the first throat x = 0 remain unaffected by the boundary 
conditions at x = x, for all times figure 13 is limited to the region x 3 0 including the 
antithroat x = - P T , ~ / C  and the second throat x = - P ; , ~ / C .  

In the early stage of the transition process the flow in the second throat is still 
subsonic and characteristics with sufficiently small values of 6 < to, therefore, are able 
to pass upstream through this throat and also through the antithroat. On each of these 
characteristics critical flow conditions are attained before they can reach the first 
throat, however, and they are swept downstream as the density perturbations enter the 
supersonic regime. Since characteristics with smaller values of 6 propagate faster than 
those with larger values of 6, they converge to generate a compression shock, which 
eventually evolves into a sonic shock but becomes non-sonic again at the time at which 
it passes through the antithroat. As a result, the characteristics shed by the sonic 
portion of the shock merge with the shock front at later time thus forming a closed 
pocket that does not influence the large-time behaviour of the flow properties 
significantly. In contrast, the characteristics generated during the second sonic phase 
of this shock initiated by its passage through the second throat are of essential 
importance as far as the approach to steady flow conditions in the limit t"+m is 
concerned. In order to see this it is necessary now to consider the time history of 
characteristics 6 3 6, where the limiting characteristic 6 = to is characterized by the 
property that a sonic state occurs at the throat in the limit ;+a, with the starting value 
pl(xo,[,) corresponding to the upper branch of the steady solution 02 (figure 12a). 
Characteristics with 5 > to, therefore, turn back before they can reach the second 
throat and, as a consequence, the flow downstream of this throat evolves ~ on an 
intermediate timescale-in very much the same way as in the divergent part of a 
conventional Lava1 nozzle (figure 10a). In particular, an expansion shock is formed, 
which develops a sonic downstream state and approaches the position defined by the 
dotted line in figure 12(a). Eventually, however, this shock starts to interact with 
characteristics 6 < 5, returning from the region between the first throat and the 
antithroat and the compression shock formed by these characteristics. In the case 
studied here the mechanism described first by Kluwick & Czemetschka (1 990) causes 
this shock to terminate a short distance upstream of the expansion shock (figure 13b). 
The interaction process between the characteristics shed by the second, terminating 
sonic portion of this shock, the characteristics ( < 6, downstream of this shock and the 
sonic expansion shock leads to an acceleration of the latter in the upstream direction. 
As the expansion shock is pushed upstream, its strength decreases only slightly and it 
finally asymptotes the position of the shock present in the second steady flow solution 
with Q = Q,,,. 

6.  Conclusions 
The start problem of nozzle flow in the dense-gas regime involves the interesting 

question whether and how information can propagate upstream from the nozzle exit 
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through multiple sonic states. In order to gain some insight into this problem we 
consider a simplified transonic version, e.g. we consider the transient motion that sets 
in if a steady subsonic solution is perturbed by lowering the pressure continuously at 
some fixed position x = x, until the value corresponding to a subsonic-supersonic 
expansion is reached. To this end the modified viscous transonic small-perturbation 
equation for steady flow derived in I is generalized to include the effect of upstream- 
propagating waves. As in I the calculations are based on the standard Navier-Stokes 
equations supplemented with a non-standard equation of state which accounts for the 
fact that the Mach number density relationship of a BZT-fluid may exhibit three sonic 
states rather than a single one. 

For simplicity it is assumed that the initially imposed steady subsonic solution 
reaches a sonic state at the throat or at one of the throats if the nozzle has two 
constrictions. Cases where the initial distribution of the field variables is purely 
subsonic can also be treated, in principle. However, since the variation of the flow 
quantities on each fixed wavelet is of exactly the same form as in the case of steady flow, 
transient flows of the latter type are not expected to yield qualitatively new results. 
Most important, they are subject to the same difficulty encountered in the problems 
studied here, namely that upstream-propagating wavelets do not reach a sonic throat 
in finite time. 

In both cases investigated in the present paper this difficulty is resolved by the 
formation of an expansion shock inside the expansion wave generated downstream of 
the throat, which initially has a supersonic upstream state. This ensures that 
information can propagate upstream from .'c = x,, where the expansion wave is 
initiated, to a sonic throat in finite time. 

In addition the results obtained indicate that a shock-free subsonic-supersonic 
expansion in a nozzle with two throats cannot be obtained by the kind of transition 
process considered here. A more detailed examination of the steady flow problem 
shows that the solution leading from a subsonic to a supersonic state is indeed non- 
unique. In addition to the desired shock-free solution there exists a second solution 
with an embedded shock discontinuity. It is this solution that represents the steady- 
state limit of the unsteady transition process. It would be interesting to know whether 
this result remains valid if two-dimensional effects are accounted for. If so, this would 
have important consequences for the design of shock-free cascades which is one of the 
most intriguing possibilities of dense-gas dynamics. 
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